# Generalise Number Patterns

## Generalising Linear Number Patterns

We can use algebra to create a general rule for a number sequence. For linear sequences, this is very easy. A
linear sequence is a number sequence that goes up by the same amount every time. So for example 1, 4, 7, 10
(+3). The advantage of finding a rule for a number sequence is that we can determine any number in that
sequence. This is how we do it. Look at the first few numbers of the sequence and see by how much it goes up
or down each time. Then use this value and put it in front of n. In the example, this is 3. “n” stands for the term
in the sequence (eg: 2 is the first number in the sequence and 5 the second in the example). Now calculate any
number in the sequence using xn (3n in this example). There might be a difference between the actual number
and the number that you get using your formula. Modify the formula accordingly (in the example, we had to
take away 1). Now you can find any number in the sequence. The 100th number in this sequence would be
299.

ULTIMATE MATHS

WHERE MATHS IS AT YOUR FINGERTIPS!

Example 1
In this number sequence, the numbers increase by two each
time. Consequently, we must write down 2n. However, we
need to add 2 to make the formula work.

Example 2
In this number sequence, the numbers increase by four
each time. Consequently, we must write down 4n. However,
we need to subtract 3 to make the formula work.

## Generalising Quadratic Number Patterns

Generalising quadratic number patterns can be a bit more challenging as generalising linear ones. Quadratic
number patterns do not go up or down by the same amount every time. An example of a quadratic number
sequence is: 3, 6, 12 & 18. However, it is still possible to generalise these types of sequences by finding the
second difference as shown in the example. First find the first difference as we did with the linear sequences
and then solve the second difference (the difference of the differences). Here is a rule for the second
differences:
•
If the 2nd difference is 2, your formula starts with n²
•
If the 2nd difference is 4, your formula starts with 2n²
•
If the 2nd difference is 6, your formula starts with 3n²
In our example, the second difference is two, so our formula starts with n². Then we need to modify the formula to make it work. In this case, we had to
add 3. These formulas can be more complicated to modify (eg: n² + 3n -1 or n² +2n). You need to use your maths skills and common sense to change
the formula so that works.
These number patterns can get very complicated. You can even have n³ depending on the sequence. However, by knowing how to generalise linear and
quadratic number sequences you are at a pretty decent level.
## Presentation

Example 1
In this number sequence, the second difference is +4.
Consequently, the first part of the formula is 2n². We had to
add 2n in this example in order for the formula to work.

Example 2
In this number sequence, the second difference is +6.
Consequently, the first part of the formula is 3n². We had to
subtract 1 in this example in order for the formula to work.

## More Algebra

You should try to do some linear equations now as this is another basic algebra skill that you should be able to master. If you want to
have a look at all our topics, make sure to visit our library. Please share this page if you like it or found it helpful!

ULTIMATE MATHS
Becoming an Accomplished
Mathematician
Ultimate Maths is a professional maths website
that gives students the opportunity to learn, revise
and apply different maths skills. We provide a wide
range of lessons and resources...

Stay Updated
Visit our
Forum & Blog
to stay updated about the
latest Ultimate Maths News
Quality Content
A wide range of quality
learning resources is at your
disposal.

Effective Teaching
Explanations, examples and
questions combined for an
effective learning experience.

Easy Navigation
A simple user interface
ensures that you find the
topics you are looking for.

Excellent Support
Our fast and reliable support
answer all your questions to
your satisfaction.

Chapter 11.0: Learning Outcomes
Students will be introduced to number patterns!
Students will learn how to generalise linear and quadratic number
patterns!

## VIDEO LESSON:

## COMING SOON!